Featured image of post 考研常用公式與範例

考研常用公式與範例

十年不見了,微積分

推薦的微積分線上計算機 https://zs.symbolab.com/solver/pre-calculus-calculator

微分常用公式

  1. $$(f(x) + g(x))' = f'(x) + g'(x)$$

  2. $$(f(x) - g(x))' = f'(x) - g'(x)$$

  3. $$(cf(x))' = c f'(x) \quad \text{(c為常數)}$$

  4. $$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x) \quad \text{(乘法法則)}$$

  5. $$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \quad \text{(除法法則)}$$

image-20250428192016503

  1. $$(f(g(x)))' = f'(g(x)) \cdot g'(x) \quad \text{(鏈式法則)}$$

image-20250427071506366

  1. $$\frac{d}{dx}(x^n) = nx^{n-1}$$

  2. $$\frac{d}{dx}(\sin x) = \cos x$$

  3. $$\frac{d}{dx}(\cos x) = -\sin x$$

  4. $$\frac{d}{dx}(\tan x) = \sec^2 x$$

  5. $$\frac{d}{dx}(e^x) = e^x$$

  6. $$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

積分常用公式

https://youtu.be/yvr4kjsqFFM?list=PLP1Ynr8cs97utEQe5VP3cv_iscJVuwbog

反導數(Anti Derivatives)

定義:若F'(x) = f(x)

稱F(x)為f(x)的反(導數)微分

$$\int f(x) dx = F(x) + C$$

一個函數先積分在微分會等同於自己

$$ \frac{d}{dx} \int f(x) dx = f(x)$$

先微分在積分也是一樣的道理,會等同於自己

$$ \int f'(x) dx = f(x)+C$$

  • 例題

$$ \int x^3 dx = \frac{1}{4}\ x^4+C $$

左邊$x^3$,是右邊多少微分過去的呢?想要微出$x^3$,那右邊想必就是 $$\frac{1}{4}\ x^4+C $$ 才會有這個答案

  • 例題

$$ \int e^x dx = e^x+C $$

  • 例題

$$ \int cos x dx = sinx+C $$

基本性質

https://youtu.be/8Ccx-dYWm9k?list=PLP1Ynr8cs97utEQe5VP3cv_iscJVuwbog

$$ \int k dx = kx+C $$

$$ \int kf(x) dx = k \int f(x) dx $$

$$ ∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx $$

$$ \int x^n dx = k \int f(x) dx $$

$$
\int x^n , dx = \begin{cases} \frac{1}{n+1} x^{n+1} + C & \text{if } n \ne -1 \
\ln |x| + C & \text{if } n = -1 \end{cases} \ $$

image-20250501044214465

變數變換法

把多項式先用某個變數替代,之後解出答案後再還原,如下

image-20250501045559250

image-20250501050135499

進階變數變換法

image-20250501051455729

定積分公式

image-20250501054101175 $$ \begin{aligned} &\text{計算 } \int_1^3 (2x + 1),dx \\
&\textbf{步驟 1:} \text{先對 } 2x + 1 \text{ 做不定積分} \\
&\int (2x + 1),dx = x^2 + x + C \\
&\textbf{步驟 2:} \text{代入上下限} \\
&\left[ x^2 + x \right]_1^3 = (3^2 + 3) - (1^2 + 1) \\
&= (9 + 3) - (1 + 1) = 12 - 2 = 10 \\
&\therefore \int_1^3 (2x + 1),dx = \boxed{10} \end{aligned} $$

  1. $$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$

  2. $$\int \frac{1}{x} dx = \ln|x| + C$$

  3. $$\int e^x dx = e^x + C$$

  4. $$\int \sin x , dx = -\cos x + C$$

  5. $$\int \cos x , dx = \sin x + C$$

  6. $$\int \sec^2 x , dx = \tan x + C$$

線性代數

求反矩陣的方法

  1. 初等變化法

image-20250507235546302

  1. 伴隨矩陣與餘因子

image-20250507235628250

泰勒展開式

【给我俩分钟,还你泰勒公式记忆一片天空】 https://www.bilibili.com/video/BV1bC4y1H7cp/?share_source=copy_web&vd_source=b38b089ffe2c29ef61bebcff0f458ed8

其實只需要記住

$e^x$

$sin x$

$ln(1+x)$

這三個就可以

$$ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots + \frac{x^n}{n!} + o(x^n) $$

$$ \sin x = x - \frac{x^3}{3!} + \cdots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + o(x^{2n+1}) $$

$$ \cos x = 1 - \frac{x^2}{2!} + \cdots + \frac{(-1)^n}{(2n)!} x^{2n} + o(x^{2n}) $$

$$ \frac{1}{1 - x} = 1 + x + x^2 + x^3 + \cdots + x^n + o(x^n) $$

$$ \frac{1}{1 + x} = 1 - x + x^2 - x^3 + \cdots + (-1)^n x^n + o(x^n) $$

$$ \ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots + \frac{(-1)^{n-1}}{n} x^n + o(x^n) $$

Licensed under CC BY-NC-SA 4.0